\square

18CV33

Third Semester B.E. Degree Examination, July/August 2021 Fluid Mechanics

Time: 3 hrs.
Max. Marks: 100

Fig. Q2(c)

3 a. What do you understand by 'Total Pressure' and 'Centre of Pressure'?
(06 Marks)
b. A circular opening, 3 m diameter in a vertical side of a tank is closed by a disc of 3 m diameter which can rotate about a horizontal diameter. Calculate i) the force on the disc ii) the torque required to maintain the disc in equilibrium in the vertical position when the head of water above the horizontal diameter is 6 m .
(06 Marks)
c. Find the horizontal and vertical components of the total force acting on a curved surface $A B$, which is the form of a quadrant of a circle of radius 2 m as shown in Fig. Q3(c). Take the width of the gate is 2 m .
(08 Marks)

Fig. Q3(c)

1 of 3

4 a. Define the terms : i) Velocity potential function ii) Stream function.
b. The velocity vector in a fluid flow is given by $V=2 x^{3} i-5 x^{2} y j+4 t K$. Find the velocity and acceleration of a fluid particle at $(1,2,3)$ at time $t=1$.
(06 Marks)
c. If for a two - dimensional potential flow, the velocity potential is given by $\phi=4 \mathrm{x}(3 \mathrm{y}-4)$, determine the velocity at the point $(2,3)$. Determine also the value of stream function ψ at the point $(2,3)$.
(08 Marks)
5 a. What is Euler's equation of motion? How will you obtain Bernoulli's equation from it?
(06 Marks)
b. A pipe through which water is flowing, is having diameters 40 cm and 20 cm at the cross section 1 and 2 respectively. The velocity of water at section 1 is given $5 \mathrm{~m} / \mathrm{s}$. Find the velocity head at the section 1 and 2 and also rate of discharge.
(06 Marks)
c. The water is flowing through a pipe having diameters 20 cm and 10 cm at section 1 and 2 respectively. The rate of flow through pipe is 35 litres $/ \mathrm{s}$. The section 1 is 6 m above datum and section 2 is 4 m above datum. If the pressure at section 1 is $39.24 \mathrm{~N} / \mathrm{cm}^{2}$. Find the intensity of pressure at section 2 .
(08 Marks)
6 a. What is a Pitot tube? How will you determine the velocity at any point with the help of pitot - tube?
(06 Marks)
b. A $20 \times 10 \mathrm{~cm}$ veturimeter is provided in a vertical pipe line carrying oil of sq. gr 0.8 , the flow being upwards. The difference in elevation of the throat section and entrance section of the venturimeter is 50 cm . The differential U - tube mercury manometer shows a gauge deflection of 40 cm . Calculate i) the discharge of oil ii) the pressure difference between the entrance section and the throat section. Take $\mathrm{C}_{\mathrm{d}}=0.98$ and Sp . Gr of mercury as 13.6 .
(06 Marks)
c. A pitot - tube is inserted in a pipe of 300 mm diameter. The static pressure in pipe is 100 mm of mercury (vaccum). The stagnation pressure at the centre of the pipe recorded by the pitot tube is $0.981 \mathrm{~N} / \mathrm{cm}^{2}$. Calculate the rate of flow of water through pipe. If the mean velocity of flow is 0.85 times the central velocity. Take $\mathrm{CV}=0.98$.
(08 Marks)
7 a. Explain the classification of orifices and mouth pieces based in their shape, size and sharpness.
(06 Marks)
b. The head of water over an orifice of diameter 100 mm is 5 m . The water coming out from orifice is collected in a circular tank of diameter 2 m . The rise of water level in circular tank is 45 m in 30 seconds. Also the co-ordinates of a certain point on the jet, measured from vena - contracta are 100 cm horizontal and 5.2 cm vertical. Find the hydraulic co-efficients $\mathrm{C}_{\mathrm{d}}, \mathrm{C}_{\mathrm{v}}$ and C_{c}.
(06 Marks)
c. A tank has two identical orifices on one of its vertical sides. The upper orifice is 3 m below the water surface and lower one is 5 m below the water surface. If the value of C_{v} for each orifice is 0.96 , find the point of intersection of the two jets.
(08 Marks)
8 a. How are the weirs and notches classified?
(06 Marks)
b. A right angled $\mathrm{V}-$ notch is inserted in the side of a tank of length 4 m and width 2.5 m . Initial height of water above the apex of the notch is 30 cm . Find the height of water above the apex, if the time required to lower the head in tank from 30 cm to final height is 3 minutes. Take $\mathrm{C}_{\mathrm{d}}=0.6$.
(06 Marks)
c. A Cipolletti weir of crest length 60 cm discharges water. The head of water over the weir is 360 mm . Find the discharge over the weir if the channel is 80 cm wide and 50 cm deep. Take $\mathrm{C}_{\mathrm{d}}=0.6$
(08 Marks)

9 a. What do you understand by Total energy line, Hydraulic gradient line, Pipes in series, Pipes in parallel and Equivalent pipe?
(05 Marks)
b. An oil of sp. gr. 0.9 and viscosity 0.06 poise is flowing through a pipe of diameter 200 mm at the rate of 60 litres $/ \mathrm{s}$. Find the head loss due to friction for a 500 m length of pipe. Find the power required to maintain this flow.
(07 Marks)
c. The rate of flow of water through a horizontal pipe is $0.25 \mathrm{~m}^{3} / \mathrm{s}$. The diameter of the pipe which is 200 mm is suddenly enlarged to 400 mm . The pressure intensity in the smaller pipe is $11.772 \mathrm{~N} / \mathrm{cm}^{2}$. Determine i) Loss of head due to sudden enlargement intensity in the large pipe iii) Power lost due to enlargement.
ii) Pressure (08 Marks)

10 a. Explain the phenomenon of water hammer. Obtain an expression for the rise of pressure when the flowing water in a pipe is brought to rest by closing the valve gradually. ($\mathbf{0 6}$ Marks)
b. The water is flowing with a velocity of $1.5 \mathrm{~m} / \mathrm{s}$ in a pipe of length 2500 m and of diameter 500 mm . At the end of the pipe, a valve is provided. Find the rise in pressure of the valve is closed in 25 seconds. Take the value of $\mathrm{C}=1460 \mathrm{~m} / \mathrm{s}$.
(06 Marks)
c. A valve is provided at the end of a cast iron pipe of diameter 150 mm and of thickness 10 mm . The water is flowing through the pipe which is suddenly stopped by closing the valve. Find the maximum velocity of water, when the rise of pressure due to sudden closure of valve is $196.2 \mathrm{~N} / \mathrm{cm}^{2}$. Take K for water as $19.62 \times 10^{4} \mathrm{~N} / \mathrm{cm}^{2}$ and E for cast iron pipe as $11.772 \times 10^{6} \mathrm{~N} / \mathrm{cm}^{2}$.
(08 Marks)

